PENGARUH AERASI TERHADAP PENGOLAHAN LIMBAH CAIR RUMAH SAKIT DENGAN METODE CONSTRUCTED WETLAND

Authors

  • Amrul Hasan (Scopus ID : 57205883034) Poltekkes Kemenkes Tanjungkarang
  • Haris Kadarusman Politeknik Kesehatan Kementerian Kesehatan Tanjungkarang

DOI:

https://doi.org/10.26630/rj.v16i1.3157

Keywords:

Wetlands, aerasi, T. latifolia, E. hyemale

Abstract

Kemampuan tumbuhan air Typha latifolia, bambu air (Equisetum hyemale), dalam sitem lahan basah buatan sebagai unit bioremediator diharapkan mampu menyelesaikan permasalahan terkait pengolahan limbah cair fasilitas pelayanan kesehatan. Penelitian ini bertujuan mengetahui pengaruh aerasi dan jenis tanaman air T. latifolia dan E. hyemale terhadap penurunan parameter limbah cair rumah sakit Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), amoniak dan Total Suspended Solid (TSS) menggunakan metode lahan basah buatan (wetland). Penelitian ini menggunakan desain quasi eksperimen dengan rancangan tidak lengkap yaitu pemberian aerasi dan tanpa aerasi yang dikombinasikan dengan wetland dan tanaman air T. latifolia dan E. hyemale untuk mengolah parameter limbah cair rumah sakit (BOD, COD, amoniak, dan TSS) sehingga memenuhi baku mutu yang ditetapkan. Perlakuan dalam penelitian ini adalah pemberian aerasi pada CWs yang ditanami T. latifolia dan E. hyemale. Penelitian ini menemukan peresentase penyisihan tertinggi untuk semua parameter pada WCs dengan E. hyemale tanpa aerasi, yaitu BOD = 72,58%, COD = 82%, TSS 78,77% dan amoniak 75,31%. Sedangkan penyisihan terendah pada CWs dengan T. latifolia dengan aerasi, yaitu BOD = 38,81%, COD = 55,14%, TSS = 42,36% dan amoniak 36,38%. Penurunan nilai terbesar ada pada parameter COD. Penelitian ini belum sempurna sehingga perlu dilanjutkan dengan menambahkan variabel variasi waktu tinggal dan variasi jumlah tanaman.

Author Biography

Amrul Hasan, (Scopus ID : 57205883034) Poltekkes Kemenkes Tanjungkarang

References

Danim, S. (2003). Sejarah dan Metodologi. EGC.

Fraser, L. H., Carty, S. M., & Steer, D. (2004). A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms. Bioresource technology, 94(2), 185-192.

Hasan, A., & Suprapti, S. C. (2021). Pengolahan Limbah Cair Rumah Sakit dengan Metode Lahan Basah Buatan (Constructed Wetland) dan Tanaman Air Typha latifolia. Jurnal Kesehatan, 12(3), 446. https://doi.org/10.26630/jk.v12i3.2697

Hayati, N. (1992). Kemampuan eceng gondok dalam mengubah sifat fisik kimia limbah cair pabrik pupuk urea dan asam formiat. Institut Teknologi Bandung.

Hidayah, E. N., Djalalembah, A., Asmar, G. A., & Cahyonugroho, O. H. (2018). Pengaruh aerasi dalam constructed wetland pada pengolahan air limbah domestik. J Ilmu Lingkung, 16(2), 155.

Kadlec, R. H., & Wallace, S. D. (2009). Treatment Wetlands, Second Edition TOC and References. In Treatment Wetlands, Second Edition.

Karathanasis, A. D., Potter, C. L., & Coyne, M. S. (2003). Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecological engineering, 20(2), 157-169.

KemenLHK. (2016). Peraturan Menteri LHK No.68 th 2016 tentang Baku Mutu Air Limbah Domestik. In Kementerian Lingkungan Hidup dan Kehutanan (Vol. 68, pp. 1–13). Kementerian Lingkungan Hidup. http://neo.kemenperin.go.id/files/hukum/19 Permen LHK th 2016 No. P.63 Baku Mutu Air Limbah Domestik.pdf

Kementrian Kesehatan RI. (2011). Pedoman Teknis Instalasi Pengolahan Air Limbah dengan Sistem Biofilter Anaerob Aerob pada Fasilitas Pelayanan Kesehatan. Kementerian Kesehatan RI.

Khiatuddin, M. (2003). Pelestarian Sumber Daya Air Dengan Teknologi Rawa. Bandar Lampung.

Kongjian, Y. (2010). “Landscape as a living system: Shanghai 2010 Expo Houtan Parkâ€,. Architectural Journal, 7, 30–35.

Puchlik, M. (2016). Application of constructed wetlands for treatment of wastewater from fruit and vegetable industry. Journal of Ecological Engineering, 17(1).

Mena, J., Rodriguez, L., Nuñez, J., Fernández, F. J., & Villaseñor, J. (2008). Design of horizontal and vertical subsurface flow constructed wetlands treating industrial wastewater. WIT Transactions on Ecology and the Environment, 111, 555-564.

Menteri Kesehatan RI. (2019). Peraturan Menteri Kesehatan Republik Indonesia No. 7 Tahun 2019. Kementrian Kesehatan RI.

Merino-Solís, M. L., Villegas, E., De Anda, J., & López-López, A. (2015). The effect of the hydraulic retention time on the performance of an ecological wastewater treatment system: an anaerobic filter with a constructed wetland. Water, 7(3), 1149-1163.

National Risk Management Research Laboratory (US). (2000). Introduction to phytoremediation. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.

Risnawati, I., & Damanhuri, T. . (2009). Penyisihan Logam Pada Lindi Menggunakan Constructed Wetland. Institut Teknologi Bandung.

UN-HABITAT. (2008). Constructed Wetlands Manual.United Nations Human Settlements Programme for Asian Cities. www.unhabitat.org

Shelef, O., Gross, A., & Rachmilevitch, S. (2013). Role of plants in a constructed wetland: current and new perspectives. Water, 5(2), 405-419.

Sultana, M. Y., Mourti, C., Tatoulis, T., Akratos, C. S., Tekerlekopoulou, A. G., & Vayenas, D. V. (2016). Effect of hydraulic retention time, temperature, and organic load on a horizontal subsurface flow constructed wetland treating cheese whey wastewater. Journal of Chemical Technology & Biotechnology, 91(3), 726-732.

Suprihatin, H. (2014). Kandungan organik limbah cair industri batik Jetis Sidoarjo dan alternatif pengolahannya. Pusat Penelitian Lingkungan Hidup Universitas Riau, 130-138.

Suswati, A. C. S. P., & Wibisono, G. (2013). Pengolahan Limbah Domestik Dengan Teknologi Taman Tanaman Air (Constructed Wetlands). The Indonesian Green Technology Journal, 2(2), 70-77.

Usman, S., & Santosa, I. (2014). Pengolahan Air Limbah (LINDI) dari Tempat Pembuangan Akhir Sampah (TPA) Menggunakan Metoda Constructed Wetland. Jurnal Kesehatan Poltekkes Kemenkes Tanjungkarang, V(2), 98–108.

Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380(1-3), 48–65. https://doi.org/10.1016/j.scitotenv.2006.09.014

Vymazal, J., & Kröpfelová, L. (2009). Removal of organics in constructed wetlands with horizontal sub-surface flow: A review of the field experience. Science of the Total Environment, 407(13), 3911–3922. https://doi.org/10.1016/j.scitotenv.2008.08.032

Vymazal, J. (2011). Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia, 674(1), 133-156.

Wahyudianto, F. E., Oktavitri, N. I., Hariyanto, S., & Maulidia, D. N. (2019). Application of Equisetum hyemale in Constructed Wetland: Influence of Wastewater Dilution and Contact Time. Journal of Ecological Engineering, 20(1), 174–179. https://doi.org/10.12911/22998993/93941

Zhang, S., Xiao, R., Liu, F., Zhou, J., Li, H., & Wu, J. (2016). Effect of vegetation on nitrogen removal and ammonia volatilization from wetland microcosms. Ecological Engineering, 97, 363-369.

Downloads

Published

2022-05-01

How to Cite

Hasan, A., & Kadarusman, H. (2022). PENGARUH AERASI TERHADAP PENGOLAHAN LIMBAH CAIR RUMAH SAKIT DENGAN METODE CONSTRUCTED WETLAND. Ruwa Jurai: Jurnal Kesehatan Lingkungan, 16(1), 41–49. https://doi.org/10.26630/rj.v16i1.3157

Issue

Section

Artikel