Airborne Microbial Assessment and Its Implication for Laboratory Safety

Authors

  • Fatmi Indah Hati Environmental Health Department, Poltekkes Kemenkes Banjarmasin, Banjarmasin, Indonesia https://orcid.org/0009-0008-9749-5260
  • Siti Noor A’in A’fifah Puteri Environmental Health Department, Poltekkes Kemenkes Banjarmasin, Banjarmasin, Indonesia
  • Siti Khairunnisya Medical Laboratory Technology Department, Poltekkes Kemenkes Banjarmasin, Banjarmasin, Indonesia

DOI:

https://doi.org/10.26630/jk.v16i3.5255

Keywords:

Air quality, Microbiology laboratories, Midget impinger, Ventilation, Environmental parameters

Abstract

The impact of airborne microbes on laboratory workers is substantial, as exposure to elevated bioaerosol concentrations can lead to respiratory illnesses, allergic sensitization, and an increased risk of laboratory-acquired infections. The air quality in microbiological laboratories is therefore a critical component of occupational health and safety. Previous studies have shown that microbial levels in educational laboratories frequently exceed international and national guidelines. Despite increasing recognition of the importance of indoor air quality, limited data are available on microbiological laboratory conditions outside Java, particularly in South Kalimantan. This study employed a descriptive, cross-sectional, observational design using the midget impinger method to collect air samples at two sampling points in each laboratory before and after ventilation activation, resulting in a total of 12 samples. Airborne bacterial counts were used to quantify microbial load, while temperature and relative humidity were simultaneously measured. Data were analyzed descriptively, and pre–post ventilation differences were assessed using the Wilcoxon Signed-Rank test. All microbial loads remained below the WHO (500CFU/m³) and Ministry of Health Republic Indonesia (700CFU/m³) thresholds. Three laboratories which relied solely on natural ventilation, exhibited the highest microbial counts, whereas laboratories with mechanical ventilation showed consistently lower levels. Although no significant differences were observed between pre-post ventilation conditions, naturally ventilated spaces tended to show higher microbial loads. Overall, airborne microbial levels and environmental parameters across the three laboratories remained within acceptable limits. However, higher humidity was associated with higher microbial concentrations, underscoring the importance of maintaining indoor environmental conditions within recommended ranges to ensure laboratory safety.

References

Alfy, M. M., El Sayed, S. B., & El-Shokry, M. (2022). Assessing decontamination practices at a medical microbiology research laboratory. Journal of Biosafety and Biosecurity, 4(2), 124–129. https://doi.org/10.1016/j.jobb.2022.08.002

Atirah, N., Mardhia, & Fajar Liana, D. (2023). Gambaran Angka Bakteri Di Laboratorium Mikroskopik Fakultas Kedokteran Universitas Tanjungpura. Majalah Kedokteran Andalas, 46(2), 282–294. https://doi.org/10.25077/mka.v46.i2.p282-294.2023

Chawla, H., Anand, P., Garg, K., Bhagat, N., Varmani, S. G., Bansal, T., McBain, A. J., & Marwah, R. G. (2023). A comprehensive review of microbial contamination in the indoor environment: sources, sampling, health risks, and mitigation strategies. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1285393

Chen, H., Yufeng, M., Yang, L., Ruibin, L., Yuantao, X., Haidong, W., & Fei, W. (2019). Experimental Study on Thermal Environment and Stratified Air-Conditioning Load of Scaled Model Laboratory with Low-Sidewall Air Supply under Step Thermal Disturbance. Proceedings of the 11th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC 2019), 603–611. https://doi.org/10.1007/978-981-13-9520-8_62

Dai, R., Liu, S., Li, Q., Wu, H., Wu, L., & Ji, C. (2021). A systematic review and meta-analysis of indoor bioaerosols in hospitals: The influence of heating, ventilation, and air conditioning. PLoS ONE, 16(12). https://doi.org/10.1371/journal.pone.0259996

Dalee, A. D., Hayeeyusoh, N., Sali, K., Hajiwangoh, Z., Salaeh, P., & Madkep, S. (2016, May 16). Microbiological Air Quality of Offices and Lecture Rooms in Yala Rajabhat University. Proceedings of the 3rd International Conference On Research, Implementation, and Education of Mathematics and Science. https://www.academia.edu/download/120988003/B-01.pdf

Dewanto, R. (2019). The Influence of Building Envelopes Towards Indoor Classroom Temperature (Case: BINUS Alam Sutera Campus). International Journal on Livable Space, 4(1), 32–39. http://dx.doi.org/10.25105/livas.v4i1.4693

Emuren, K., & Ordinioha, B. (2016). Microbiological assessment of indoor air quality at different sites of a tertiary hospital in South-South Nigeria. Port Harcourt Medical Journal, 10(2), 79. https://doi.org/10.4103/0795-3038.189459

Fu Shaw, L., Chen, I. H., Chen, C. S., Wu, H. H., Lai, L. S., Chen, Y. Y., & Wang, F. Der. (2018). Factors influencing microbial colonies in the air of operating rooms. BMC Infectious Diseases, 18(1). https://doi.org/10.1186/s12879-017-2928-1

Giri, S. K. (2020). Indoor Air Quality in College Laboratories: Exposure to Airborne Fungi. International Journal of Scientific Research in Biological Sciences, 7(6), 120–130. https://ijsrbs.isroset.org/index.php/j/article/view/425

Hazrin, A. H., Syazana, A., Hadry, F., Norhidayah, A. B., & Shukri, M. (2015). Indoor Microbial Contamination and Its Relation to Physical Indoor Air Quality (IAQ) Characteristics at Different Laboratory Conditions. Jurnal Teknologi, 77(77), 39–44. https://doi.org/10.11113/jt.v77.6705

Hussin, M., Ismail, M. R., & Ahmad, M. S. (2014). Thermal comfort study of air-conditioned university laboratories. In Int. J. Environmental Technology and Management, 17(5). https://doi.org/10.1504/IJETM.2014.064582

Idemudia, I. B., Momoh, A. M., & Michael, E. I. (2022). Indoor Air Quality of Selected Lecture Theatres in the Faculty of Life Sciences, University of Benin. Nigerian Journal of Pure and Applied Sciences, 35(1), 4250–4255. https://doi.org/10.48198/NJPAS/21.B20

Jabeen, R., Kizhisseri, M. I., Mayanaik, S. N., & Mohamed, M. M. (2023). Bioaerosol assessment in indoor and outdoor environments: a case study from India. Scientific Reports 2023 13:1, 13(1), 18066-. https://doi.org/10.1038/s41598-023-44315-z

Kementerian Kesehatan Republik Indonesia. (2002). Keputusan Menteri Kesehatan RI No. 1355/MENKES/SK/X/2002 tentang Standar Operasional Pengambilan dan Pengukuran Sampel Kualitas Udara Ruangan Rumah Sakit, Pub. L. No. No. 1355/MENKES/SK/X/2002. Jakata.

Kementerian Kesehatan Republik Indonesia. (2016). Peraturan Menteri Kesehatan Republik Indonesia No. 48 Tahun 2016 Tentang Standar Keselamatan dan Kesehatan Kerja Perkantoran. Jakarta.

Kementerian Kesehatan Republik Indonesia. (2023). Peraturan Menteri Kesehatan Republik Indonesia No. 2 Tahun 2023 tentang Standar Baku Mutu Kesehatan Lingkungan. Jakarta. www.peraturan.go.id

Kim, K. H., Kabir, E., & Jahan, S. A. (2018). Airborne bioaerosols and their impact on human health. Journal of Environmental sciences, 67, 23-35. https://doi.org/10.1016/j.jes.2017.08.027

Mazlan, S. M., Hamzah, A., Noor, W. S. A. W. M., & Abas, A. (2020b). Assessment of Indoor Microbiological Air Contamination in Research Facility at University of Malaysia. Preprint, Europe PMC. https://doi.org/10.21203/rs.3.rs-42886/v1

Mba, E. J., Oforji, P. I., Okeke, F. O., Ozigbo, I. W., Onyia, C. D. F., Ozigbo, C. A., Ezema, E. C., Awe, F. C., Nnaemeka-Okeke, R. C., & Onyia, S. C. (2025). Assessment of Floor-Level Impact on Natural Ventilation and Indoor Thermal Environment in Hot–Humid Climates: A Case Study of a Mid-Rise Educational Building. Buildings, 15(5). https://doi.org/10.3390/buildings15050686

Pramaningsih, V., Rusdi, I., S., & Yuliawati, R. (2022). Indoor Air Quality of Physical and Microbiological in Universitas Muhammadiyah Kalimantan Timur, Indonesia. Indonesian Journal of Environmental Management and Sustainability, 6(1), 168–174. https://doi.org/10.26554/ijems.2022.6.1.168-174

Suryantoro, H. (2023). Prototipe Dehumidifier untuk Monitoring Kelembaban Laboratorium Biomedis Menggunakan Sensor DHT22 dan Peltier TEC1-12706 Berbasis Arduino. In Hery Suryantoro, Indonesian Journal of Laboratory, ISSN (Vol. 2655). https://doi.org/10.22146/ijl.v0i3.88033

Umana, S., Uko, M. P., Bassey, M., Edet, N., Uko, M., & Agbo, B. (2018). Microbiological Quality of Indoor and Outdoor Air Within Biological Sciences Laboratories in Akwa Ibom State University, Nigeria. Frontiers in Environmental Microbiology, 4(6), 124–132. https://doi.org/10.11648/j.fem.20180406.11

Wamil, N. B., Balmaceda, D. T., Fernandez, B. F., Aurelio, A. A., Belarmino, R. H., Camacho, J. J., Castro, C. A. P., Cortez, S. N. A., Daruca, P. E. B., Dulay, R. S., Dumale, L. J. C., Flora, C. C., Galdonez, F. G., Garcia, J. D., Mabana, I. B., Manansala, G. M. S., Miguel, J. A. C., Murillo, K. B., Pamada, J. A., … Reyes, A. T. (2024). Assessment of Airborne Microbial Contaminants Using Passive Sampling Technique. Uttar Pradesh Journal of Zoology, 45(21), 294–301. https://doi.org/10.56557/upjoz/2024/v45i214638

Yogeswaran, K., Azmi, L., Bhassu, S., Isa, H. N., & Aziz, M. A. (2023a). Physical parameters influence the microbial quality of indoor air in research laboratories: A report from Malaysia. Kuwait Journal of Science, 50(4), 665–673. https://doi.org/10.1016/J.KJS.2023.04.009

Downloads

Published

22-12-2025