Analysis of Klebsiella Pneumonia and Resistance Genes Coding and Carbapenemase Production in National Referral Hospital Wastewater

Authors

  • Glory Gelarich Simanjuntak Master’s Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia
  • Anis Karuniawati Department of Microbilogy, Faculty of Medicine, Universitas Indonesia
  • Yulia Rosa Saharman Department of Microbilogy, Faculty of Medicine, Universitas Indonesia
  • Windi Muziasari Resistomap Oy

DOI:

https://doi.org/10.26630/jk.v14i3.4147

Keywords:

Antibiotic-resistant, Environment, ESBL.

Abstract

Hospitals, as a source of transmission and spread of bacteria carrying antibiotic-resistant genes (ARGs) as well as a high source of antibiotic compounds, are a significant reservoir of antibiotic-resistant gene transfer that causes bacteria to develop multidrug resistance (MDR). Klebsiella pneumonia is a bacterium often found in wastewater with a high level of Extended Spectrum β-lactamase (ESBL) and carbapenemase resistance. This study aimed to determine Klebsiella pneumonia and resistance genes encoding ESBL and carbapenemase in hospital wastewater to obtain primary Antimicrobial Resistance (AMR) data in the environment, which was first conducted in Indonesia. The resistance gene detection method was developed using High Throughput Real-Time and conventional Real-Time (HT-RT PCR). The data obtained were relative abundance and copy number. The results showed that blaTEM and blaNDM were the highest ARGs. Conventional Real-Time PCR results showed better sensitivity in detecting K. pneumoniae and ARGs than HT-RT PCR. The detection of K. pneumoniae and ARGs in RSCM wastewater in Indonesia indicates the need to improve the handling of RSCM WWTP to monitor the number of microbial resistances to antibiotics.

References

Ahmed, S. A., Baris, E., Go, D. S., Lofgren, H., Osorio-Rodarte, I., & Thierfelder, K. (2017). Assessing the global economic and poverty effects of antimicrobial resistance. World Bank Policy Research Working Paper, 8133.

Ainsworth, R. G. (Ed.). (2004). Safe piped water. Iwa Publishing.

Al-Nakeeb, N. K., Radi, J., Hamdan, K., & Fouad, Z. (2018). Clinical and immunological effects of experimental infection with Klebsiella pneumoniae in lambs in Iraq. Al-Qadisiyah Journal of Veterinary Medicine Sciences, 17(1).

Al-Tawfiq, J. A., Rabaan, A. A., Saunar, J. V., & Bazzi, A. M. (2020). Antimicrobial resistance of gram-negative bacteria: A six-year longitudinal study in a hospital in Saudi Arabia. Journal of infection and public health, 13(5), 737-745.

Bassetti, M., Righi, E., Carnelutti, A., Graziano, E., & Russo, A. (2018). Multidrug-resistant Klebsiella pneumoniae: challenges for treatment, prevention and infection control. Expert Review of Anti-Infective Therapy, 16(10), 749–761. https://doi.org/10.1080/14787210.2018.1522249

Bi, D., Jiang, X., Sheng, Z.-K., Ngmenterebo, D., Tai, C., Wang, M., Deng, Z., Rajakumar, K., & Ou, H.-Y. (2015). Mapping the resistance-associated mobilome of a carbapenem-resistant Klebsiella pneumoniae strain reveals insights into factors shaping these regions and facilitates generation of a ‘resistance-disarmed’model organism. Journal of Antimicrobial Chemotherapy, 70(10), 2770–2774. https://doi.org/10.1093/jac/dkv204

Calbo, E., & Garau, J. (2015). The changing epidemiology of hospital outbreaks due to ESBL-producing Klebsiella pneumoniae: the CTX-M-15 type consolidation. Future Microbiology, 10(6), 1063–1075. https://doi.org/10.2217/fmb.15.22

Chagas, T. P. G., Seki, L. M., Cury, J. C., Oliveira, J. A. L., Dávila, A. M. R., Silva, D. M., & Asensi, M. D. (2011). Multiresistance, betaâ€lactamaseâ€encoding genes and bacterial diversity in hospital wastewater in Rio de Janeiro, Brazil. Journal of Applied Microbiology, 111(3), 572–581. https://doi.org/10.1111/j.1365-2672.2011.05072.x

Chen, N., Ou, H.-Y., van Aartsen, J. J., Jiang, X., Li, M., Yang, Z., Wei, Q., Chen, X., He, X., & Deng, Z. (2010). The pheV phenylalanine tRNA gene in Klebsiella pneumoniae clinical isolates is an integration hotspot for possible niche-adaptation genomic islands. Current Microbiology, 60, 210–216. https://doi.org/10.1007/s00284-009-9526-4

Chmelnitsky, I., Shklyar, M., Leavitt, A., Sadovsky, E., Navon-Venezia, S., Dalak, M. Ben, Edgar, R., & Carmeli, Y. (2014). Mix and match of KPC-2 encoding plasmids in Enterobacteriaceae-comparative genomics. Diagnostic Microbiology and Infectious Disease, 79(2), 255–260. https://doi.org/10.1016/j.diagmicrobio.2014.03.008

Dantas, G., & Sommer, M. O. A. (2014). How to fight back against antibiotic resistance. Am Sci, 102(1), 42–51.

De Kraker, M. E. A., Davey, P. G., Grundmann, H., & Group, B. S. (2011). Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Medicine, 8(10), e1001104. https://doi.org/10.1371/journal.pmed.1001104

Fatmawati, N. N. D., Tarini, N. M. A., Budayanti, N. N. S., & Yuliandari, P. (2015). Molecular Characterization of Extended-Spectrum β-Lactamases-Producing Lebsiellapneumoniae Isolated from Clinical Specimens at a Tertiary-Referral Hospital in Denpasar, Bali, Indonesia. Advanced Science Letters, 21(2), 219–221. https://doi.org//10.1166/asl.2015.5860

Founou, L. L., Founou, R. C., & Essack, S. Y. (2016). Antibiotic resistance in the food chain: a developing country-perspective. Frontiers in Microbiology, 7, 1881. https://doi.org/10.3389/fmicb.2106.01881

Fouts, D. E., Tyler, H. L., DeBoy, R. T., Daugherty, S., Ren, Q., Badger, J. H., Durkin, A. S., Huot, H., Shrivastava, S., & Kothari, S. (2008). Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genetics, 4(7), e1000141. https://doi.org/10.1371/journal.pgen.1000141

Holt, K. E., Wertheim, H., Zadoks, R. N., Baker, S., Whitehouse, C. A., Dance, D., Jenney, A., Connor, T. R., Hsu, L. Y., & Severin, J. (2015). Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proceedings of the National Academy of Sciences, 112(27), E3574–E3581. https://doi.org/10.1073/pnas.1501049112

Jacoby, G. A. (2009). AmpC β-lactamases. Clinical Microbiology Reviews, 22(1), 161–182. https://doi.org/10.1128/cmr.00036-08

Jaiyeola, O. M. (2020). Differential bacteriology of extradural, subdural, and intra-parenchymal suppuration at Chris Hani Baragwanath Academic Hospital (CHBAH): a 5-year review of records. [Doctoral dissertation]. Johannesburg: Faculty of Health Sciences, University of the Witwatersrand.

Laxminarayan, R., Sridhar, D., Blaser, M., Wang, M., & Woolhouse, M. (2016). Achieving global targets for antimicrobial resistance. Science, 353(6302), 874–875. https://doi.org/10.1126/science.aaf9286

Lee, C.-R., Lee, J. H., Park, K. S., Kim, Y. B., Jeong, B. C., & Lee, S. H. (2016). Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Frontiers in Microbiology, 7, 895. https://doi.org/10.3389/fmicb.2016.00895

Lenchenko, E. M., Vatnikov, Y. A., Sotnikova, E. D., Kulikov, E. V, Gnezdilova, L. A., Seleznev, S. B., Strizhakov, A. A., & Kuznetsov, V. I. (2017). Experimental toxemia of chickens contaminated with Yersinia enterocolitica bacteria. Asian Journal of Pharmaceutics, 11(1), 91–96.

Medina, E., & Pieper, D. H. (2016). Tackling threats and future problems of multidrug-resistant bacteria. How to Overcome the Antibiotic Crisis: Facts, Challenges, Technologies and Future Perspectives, 3–33. https://doi.org/10.1007/82_2016_492

Petit, A., Sirot, D. L., Chanal, C. M., Sirot, J. L., Labia, R., Gerbaud, G., & Cluzel, R. A. (1988). Novel plasmid-mediated beta-lactamase in clinical isolates of Klebsiella pneumoniae more resistant to ceftazidime than to other broad-spectrum cephalosporins. Antimicrobial agents and chemotherapy, 32(5), 626-630. https://doi.org/10.1128/aac.32.5.626

Pai, R., Gertz, R. E., & Beall, B. (2006). Sequential multiplex PCR approach for determining capsular serotypes of Streptococcus pneumoniae isolates. Journal of Clinical Microbiology, 44(1), 124–131. https://doi.org/10.1128/jcm.44.1.124-131.2006

Pendleton, J. N., Gorman, S. P., & Gilmore, B. F. (2013). Clinical relevance of the ESKAPE pathogens. Expert Review of Anti-Infective Therapy, 11(3), 297–308. https://doi.org/10.1586/eri.13.12

Popa, L. I., Gheorghe, I., Barbu, I. C., Surleac, M., Paraschiv, S., Măruţescu, L., Popa, M., Pîrcălăbioru, G. G., Talapan, D., & Niţă, M. (2021). Multidrug-resistant Klebsiella pneumoniae ST101 clone survival chain from inpatients to hospital effluent after chlorine treatment. Frontiers in Microbiology, 11, 610296. https://doi.org/10.3389/fmicb.2020.610296

Queenan, A. M., & Bush, K. (2007). Carbapenemases: the versatile β-lactamases. Clinical Microbiology Reviews, 20(3), 440–458. https://doi.org/10.1128/cmr.00001-07

Sachivkina, N. P., Karamyan, A. S., Kuznetsova, O. M., Byakhova, V. M., Bondareva, I. B., & Molchanova, M. A. (2019). Development of therapeutic transdermal systems for microbial biofilm destruction. FEBS Open Bio, 9(S1), 386.

Saharman, Y. R., Karuniawati, A., Sedono, R., Aditianingsih, D., Goessens, W. H. F., Klaassen, C. H. W., Verbrugh, H. A., & Severin, J. A. (2020). Clinical impact of endemic NDM-producing Klebsiella pneumonia in intensive care units of the national referral hospital in Jakarta, Indonesia. Antimicrobial Resistance & Infection Control, 9(1), 1–14. https://doi.org/10.1186/s13756-020-00716-7

Svec, D., Tichopad, A., Novosadova, V., Pfaffl, M. W., & Kubista, M. (2015). How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomolecular Detection and Quantification, 3, 9–16. https://doi.org/10.1016/j.bdq.2015.01.005

Vikesland, P. J., Pruden, A., Alvarez, P. J. J., Aga, D., Bürgmann, H., Li, X., Manaia, C. M., Nambi, I., Wigginton, K., & Zhang, T. (2017). Toward a comprehensive strategy to mitigate dissemination of environmental sources of antibiotic resistance (Vol. 51, Issue 22, pp. 13061–13069). ACS Publications. https://doi.org/10.1021/acs.est.7b03623

Woodford, N., Turton, J. F., & Livermore, D. M. (2011). Multiresistant Gram-negative bacteria: the role of high-risk clones in disseminating antibiotic resistance. FEMS Microbiology Reviews, 35(5), 736–755. https://doi.org/10.1111/j.1574-6976.2011.00268.x

World Health Organization. (2015). Operational framework for building climate resilient health systems. Geneva: World Health Organization. https://iris.who.int/bitstream/handle/10665/189951/?sequence=1

Wright, G. D. (2010). Antibiotic resistance in the environment: a link to the clinic? Current Opinion in Microbiology, 13(5), 589–594. https://doi.org/10.1016/j.mib.2010.08.005

Zamorano, L., Miró, E., Juan, C., Gomez, L., Bou, G., Gonzalez-Lopez, J. J., Martinez-Martinez, L., Aracil, B., Conejo, M. C., & Oliver, A. (2015). Mobile genetic elements related to the diffusion of plasmid-mediated AmpC β-lactamases or carbapenemases from Enterobacteriaceae: findings from a multicenter study in Spain. Antimicrobial Agents and Chemotherapy, 59(9), 5260–5266. https://doi.org/10.1128/aac.00562-15

Zhang, J., van Aartsen, J. J., Jiang, X., Shao, Y., Tai, C., He, X., Tan, Z., Deng, Z., Jia, S., & Rajakumar, K. (2011). Expansion of the known Klebsiella pneumoniae species gene pool by characterization of novel alien DNA islands integrated into tmRNA gene sites. Journal of Microbiological Methods, 84(2), 283–289. https://doi.org/10.1016/j.mimet.2010.12.016

Downloads

Published

30-11-2023