Uji Toksisitas Akut Nanoinsektisida Tembakau (Nicotiana tabacum L.) terhadap Mencit

Authors

  • Sri Wahyuni Handayani Kementarian kesehatan
  • Dwi Susilo Balai Besar Penelitian dan Pengembangan Vektor dan Reservoir Penyakit Salatiga
  • Arum Triyas Wardani Balai Besar Penelitian dan Pengembangan Vektor dan Reservoir Penyakit Salatiga
  • Yusnita Mirna Anggraeni Badan Riset dan Inovasi Nasional, Indonesia

DOI:

https://doi.org/10.26630/jk.v13i3.3229

Keywords:

Mice, Tobacco nanoinsecticide, Toxicity test.

Abstract

Tobacco (Nicotiana tabacum) is a plant that can be used as a natural insecticide. Tobacco extracts can be made as alternative nanoinsecticides to be used as Aedes aegypti control. This study aims to obtain information on the toxicity of tobacco nanoinsecticides and obtain the LD50 of tobacco nanoinsecticides in mice. The research was conducted at the Center for Disease Vector and Reservoir Research and Development (B2P2VRP) with a pure experimental method. The results showed that the particle size ranged from 26.9; 53.7 and 89nm. The results of the metal content test with an Atomic Absorption Spectrophotometer (AAS) showed the presence of Ag content in the nanoinsecticide solution made. Spectrophotometry measurements showed a peak at a wavelength of 420 nm and functional group bonds were formed. The characteristic SEM photo shows the particle morphology in the form of round-face crystals. The results of the toxicity test using the OECD 423 LD50 method at 2500mg/kg BB showed that tobacco nanoinsecticides were in the slightly toxic category. Administration of tobacco nanoinsecticides causes toxic symptoms in the form of decreased cardiac activity, convulsions, and decreased movement activity, while from the histopathological test results, the number of kidney injuries is in the range of 10 to 25%.

References

Adhikari, U., Bhattacharya, K., Mitra, P., & Chandra, G. (2018). Larvicidal efficacy of silver nanoparticles synthesized biologically using Swietenia mahagoni (L.) Jacq. leaf extract against Anopheles stephensi, Culex quinquefasciatus and Cx. vishnui group. Indian Journal of Experimental Biology, 56(1), 14–19.

Bankar, A., Joshi, B., Kumar, A. R., & Zinjarde, S. (2010). Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 368(1), 58–63. https://doi.org/10.1016/j.colsurfa.2010.07.024

BPOM RI. (2020). Peraturan Badan Pengawas Obat Dan Makanan Tentang Pedoman Uji Toksisitas Praklinik Secara in Vivo. Journal of Chemical Information and Modeling, 53(9), 21–25.

Chowański, S., Adamski, Z., Marciniak, P., Rosiński, G., Büyükgüzel, E., Büyükgüzel, K., Falabella, P., Scrano, L., Ventrella, E., Lelario, F., & Bufo, S. (2016). A Review of Bioinsecticidal Activity of Solanaceae Alkaloids. Toxins, 8(3), 60. https://doi.org/10.3390/toxins8030060

Chung, C., Ugen, K. E., Sardesai, N. Y., Weiner, D. B., & Muthumani, K. (2016). Chapter 28 Protocols for Developing Novel Chikungunya Virus DNA Vaccines. 1426. https://doi.org/10.1007/978-1-4939-3618-2_28

Dhand, V., Soumya, L., Bharadwaj, S., Chakra, S., Bhatt, D., & Sreedhar, B. (2016). Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Materials Science and Engineering: C, 58, 36–43. https://doi.org/10.1016/j.msec.2015.08.018

Doolette, C. L., McLaughlin, M. J., Kirby, J. K., & Navarro, D. A. (2015). Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake. Journal of Hazardous Materials, 300, 788–795. https://doi.org/10.1016/j.jhazmat.2015.08.012

Dhurhania, C. E., & Novianto, A. (2018). Uji kandungan fenolik total dan pengaruhnya terhadap aktivitas antioksidan dari berbagai bentuk sediaan sarang semut (Myrmecodia pendens). Jurnal Farmasi dan Ilmu Kefarmasian Indonesia, 5(2), 62-68. https://e-journal.unair.ac.id/JFIKI/article/view/10556/7999

Ge, W., Hu, Q., Fang, X., Liu, J., Xu, J., Hu, J., Liu, X., Ling, Q., Wang, Y., Li, H., Gao, M., Jiang, L., Yang, Z., & Tang, W. (2019). LDK378 improves micro- and macro-circulation via alleviating STING-mediated inflammatory injury in a Sepsis rat model induced by Cecal ligation and puncture. Journal of Inflammation (United Kingdom), 16(1), 1–10. https://doi.org/10.1186/s12950-019-0208-0

Handayani, S. W., Prastowo, D., Boesri, H., Oktsariyanti, A., & Joharina, A. S. (2018). Efektivitas Ekstrak Daun Tembakau (Nicotiana tabacum L) dari Semarang, Temanggung, dan Kendal Sebagai Larvasida Aedes aegypti L. Balaba: Jurnal Litbang Pengendalian Penyakit Bersumber Binatang Banjarnegara, 23-30. https://doi.org/10.22435/blb.v14i1.293

Hassine, T. B. E. N., Mansour, A. B. E. N., & Hammami, S. (2013). Case report of fatal poisoning by Nicotina tabacum in cattle in Tunisia. 141–144.

Kardinan, A. (2003). Tanaman Pengusir dan Pembasmi Nyamuk. Jakarta: Agromedia Pustaka.

Khalil, M. M. H., Ismail, E. H., El-Baghdady, K. Z., & Mohamed, D. (2014). Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry, 7(6), 1131–1139. https://doi.org/10.1016/j.arabjc.2013.04.007

Khodashenas, B., & Ghorbani, H. R. (2015). Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2014.12.014

Kuppusamy, P., Yusoff, M. M., Maniam, G. P., & Govindan, N. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharmaceutical Journal, 24(4), 473-484. https://doi.org/10.1016/j.jsps.2014.11.013

Li, D., Liu, Z., Yuan, Y., Liu, Y., & Niu, F. (2015). Green synthesis of gallic acid-coated silver nanoparticles with high antimicrobial activity and low cytotoxicity to normal cells. Process Biochemistry, 50(3), 357–366. https://doi.org/10.1016/j.procbio.2015.01.002

Makiyah, A., & Tresnayanti, S. (2017). Uji toksisitas akut yang diukur dengan penentuan ld50 ekstrak etanol umbi iles-iles (Amorphophallus variabilis Bl.) pada tikus putih strain wistar. Majalah Kedokteran Bandung, 49(3), 145-155.. https://doi.org/10.15395/mkb.v49n3.1130

Montefuscoli, A. R., Werdin Gonz??lez, J. O., Palma, S. D., Ferrero, A. A., & Fern??ndez Band, B. (2014). Design and development of aqueous nanoformulations for mosquito control. Parasitology Research, 113(2), 793–800. https://doi.org/10.1007/s00436-013-3710-y

Ningrum, S. R. W. (2012). Validasi Uji Toksisitas Akut Metode Organization for Economic Cooperation and Development ( Oecd ) 425 Pada Mencit Betina Menggunakan Tembaga ( Ii ) Sulfat Pentahidrat Validasi Uji Toksisitas Akut Metode Organization for Economic Cooperation and Developme. [Skripsi]. Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia.

Nurfaat, D. L. (2016). Uji Toksisitas Akut Ekstrak Etanol Benalu Mangga (Dendrophthoe petandra) Terhadap Mencit Swiss Webster. Indonesian Journal of Pharmaceutical Science and Technology, 3(2), 53–65. http://jurnal.unpad.ac.id/ijpst/article/view/7941

Oktavia, I. N., & Sutoyo, S. (2021). Review Artikel: Sintesis Nanopartikel Perak Menggunakan Bioreduktor Ekstrak Tumbuhan Sebagai Bahan Antioksidan. Journal of Chemistry, 10(1), 9–43. https://doi.org/10.26740/ujc.v10n1.p37-54

Parthiban, E., Manivannan, N., Ramanibai, R., & Mathivanan, N. (2019). Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnology Reports, 21(December 2018), e00297. https://doi.org/10.1016/j.btre.2018.e00297

POM, D. (1995). Sediaan Galenika. Kementerian Kesehatan.

Puripattanavong, J., Songkram, C., Lomlim, L., & Amnuaikit, T. (2013). Development of concentrated emulsion containing nicotiana tabacum extract for use as pesticide. Journal of Applied Pharmaceutical Science, 3(11), 16–21. https://japsonline.com/admin/php/uploads/1101_pdf.pdfhttps://doi.org/10.7324/JAPS.2013.31104

Ragaei, M., & Sabry, A. K. H. (2014). Nanotechnology for insect pest control. International journal of science, environment and technology, 3(2), 528-545.

Rawani, A., Chowdhury, N., Ghosh, A., Laskar, S., & Chandra, G. (2013). Mosquito larvicidal activity of Solanum nigrum berry extracts. The Indian Journal of Medical Research, 137(5), 972–976. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3734691&tool=pmcentrez&rendertype=abstract

Rawani, A., Ray, A. S., Ghosh, A., Sakar, M., & Chandra, G. (2017). Larvicidal activity of phytosteroid compounds from leaf extract of Solanum nigrum against Culex vishnui group and Anopheles subpictus. BMC Research Notes, 10(1), 1–8. https://doi.org/10.1186/s13104-017-2460-9

Sasmiko, W. A., Wijayanti, A. D., Fitriana, I., & Sari, P. W. (2015). Pengujian Toksisitas Akut Obat Herbal Pada Mencit Berdasarkan Organization for Economic Co-operation and Development (OECD) The acute toxicity test of herbal medicine in mice based on Organization for Economic Co-operation and Development (OECD). Jurnal Sain Veteriner, 33(2), 234–239. https://doi.org/10.22146/jsv.17924

Shofiana. (2019). Toksisitas Akut Produk Yacona Menggunakan Metode OECD (Organisation For Economic Co-operation and Development) 425 pada Tikus Wistar Betina. Journal of Chemical Information and Modeling, (2019), 1689-1699, 53(9).

Soni, N., & Prakash, S. (2014). Green Nanoparticles for Mosquito Control. The Scientific World Journal, 2014, 1–6. https://doi.org/10.1155/2014/496362

Suhita, N. L. P. R., Sudira, I. W., & Winaya, I. B. O. (2013). Histopatologi Ginjal Tikus Putih Akibat Pemberian Ekstrak Pegagan (Centella asiatica) Peroral. Buletin Veteriner Udayana. https://ojs.unud.ac.id/index.php/buletinvet/article/download/5741/4347

Tirtosastro, S., & Sasongko, P. (2017). Penerapan teknik budidaya untuk menurunkan kadar nikotin tembakau. Buana Sains, 16(1), 25-32.

Yulaikah, Sri., A. D. K. (2014). Keragaman Karakter Kualitatif, Kuantitatif, dan Identifikasi Senyawa Kimia Ekstrak N-Heksana Beberapa Aksesi Plasma Nutfah Tembakau. Buletin Tanaman Tembakau, Serat & Minyak Industri, Vol 6, No2.

Downloads

Published

13-12-2022