Variasi Iklim dan Dinamika Kasus DBD di Indonesia: Systematic Review

Authors

  • Prayudhy Yushananta Poltekkes Kemenkes Tanjungkarang
  • Agus Setiawan Fakultas Kehutanan, Universitas Lampung, Indonesia
  • Tugiyono Tugiyono Fakultas Kehutanan, Universitas Lampung, Indonesia

DOI:

https://doi.org/10.26630/jk.v11i2.1696

Keywords:

Climate, DHF, Humidity, Rainfall, Temperature.

Abstract

DHF is still a serious problem, especially in children in endemic countries. An estimated 3,6 billion people are at risk and 21,000 deaths each year. Indonesia, in 2018 there were 65,602 cases (IR=24,75 per 100,000 population), with the death of 467 people (CFR=0,71%), and 85.6% of districts in Indonesia reported dengue cases. The climate becomes one of the environmental factors that play a role in the number of cases. Google scholar is used as the main source for finding articles related to DHF and climate published during 2015-2019. The inclusion criteria set forth, are articles that must be published in international journals, published in 2015-2019, must discuss Indonesia, and must assess the effect of climate change on DHF. A total of 52 articles were found, but only 6 articles met the inclusion criteria. Using various analytical methods, all articles obtain climate variability related to the incidence of DHF, through vector abundance. The dynamics of DHF is a very complex system, so it is necessary to combine additional factors other than climate to predict it. The development of an early warning and monitoring system is important, in addition to strengthening the role of households in controlling DHF.

References

Arrivillaga, J., & Barrera, R. (2004). Food as a limiting factor for Aedes aegypti in water-storage containers. Journal of Vector Ecology : Journal of the Society for Vector Ecology, 29(1), 11–20. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15266737

Azhar, K., Marina, R., & Anwar, A. (2017). A prediction model of Dengue incidence using climate variability in Denpasar city. Health Science Journal of Indonesia, 8(2), 68-73. https://doi.org/10.22435/hsji.v8i2.6952.68-73

Brady, O. J., Golding, N., Pigott, D. M., Kraemer, M. U. G., Messina, J. P., Reiner, R. C., … Hay, S. I. (2014). Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites and Vectors, 7(1), 1–17. https://doi.org/10.1186/1756-3305-7-338

Brady, O. J., Johansson, M. A., Guerra, C. A., Bhatt, S., Golding, N., Pigott, D. M., … Hay, S. I. (2013). Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasites and Vectors, 6(1), 1-12. https://doi.org/10.1186/1756-3305-6-351

Brisbois, B. W., & Ali, S. H. (2010). Climate change, vector-borne disease and interdisciplinary research: social science perspectives on an environment and health controversy. EcoHealth, 7(4), 425-438.

Espinosa, M., Weinberg, D., Rotela, C. H., Polop, F., Abril, M., & Scavuzzo, C. M. (2016). Temporal Dynamics and Spatial Patterns of Aedes aegypti Breeding Sites, in the Context of a Dengue Control Program in Tartagal (Salta Province, Argentina). PLoS Neglected Tropical Diseases, 10(5), 1-21. https://doi.org/10.1371/journal.pntd.0004621

Gubler, D. J. (2013). Prevention and control of Aedes aegypti-borne diseases: Lesson learned from past successes and failures. Asia-Pacific Journal of Molecular Biology and Biotechnology, 19(3), 111–114.

Gubler, D. J., Reiter, P., Ebi, K. L., Yap, W., Nasci, R., & Patz, J. A. (2001). Climate variability and change in the United States: Potential impacts on vector- and Rodent-Borne diseases. Environmental Health Perspectives, 109(SUPPL. 2), 223-233. https://doi.org/10.2307/3435012

Haryanto, B. (2009). Climate Change and Public Health in Indonesia Impacts and Adaptation. Nautilus Institute Australia, (December), 1-12.

Hopp, M. J., & Foley, J. A. (2001). Global-scale relationships between climate and the dengue fever vector, Aedes aegypti. Climatic Change, 48(2–3), 441–463.

Karyanti, M. R., Uiterwaal, C. S. P. M., Kusriastuti, R., Hadinegoro, S. R., Rovers, M. M., Heesterbeek, H., … Bruijning-Verhagen, P. (2014). The changing incidence of Dengue Haemorrhagic Fever in Indonesia: a 45-year registry-based analysis. BMC Infectious Diseases, 14(1), 412. https://doi.org/10.1186/1471-2334-14-412

Kemenkes, P. (2010). BULETIN DBD. Jakarta: Pusat Data Dan Informasi, Kementerian Kesehatan RI.

Kesetyaningsih, T. W., Andarini, S., Sudarto, & Pramoedyo, H. (2018a). Determination of environmental factors affecting dengue incidence in Sleman District, Yogyakarta, Indonesia. African Journal of Infectious Diseases, 12(Special Issue 1), 13–25. https://doi.org/10.2101/Ajid.12v1S.3

Kesetyaningsih, T. W., Andarini, S., Sudarto, S., & Pramoedyo, H. (2018b). The minimum-maximum weather temperature difference effect on dengue incidence in sleman regency of Yogyakarta, Indonesia. Walailak Journal of Science and Technology, 15(5), 387-396.

Kraemer, M. U. G., Sinka, M. E., Duda, K. A., Mylne, A. Q. N., Shearer, F. M., Barker, C. M., … Hay, S. I. (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus. ELife, 4(JUNE2015), 1–18. https://doi.org/10.7554/eLife.08347

Lloyd, L. S. (2003). Best practices for dengue prevention and control in the Americas. Washington DC Camp Dresser and McKee International Environmental Health.

Ministry of Health Indonesia. (2018). Profil Kesehatan Indonesia 2017 [Indonesia Health Profile 2017]. Jakarta.

Ministry of Health Indonesia. (2019). Profil Kesehatan Indonesia 2018 [Indonesia Health Profile 2018]. Jakarta.

Mourya, D. T., Yadav, P., & Mishra, A. C. (2004). Effect of temperature stress on immature stages and susceptibility of Aedes aegypti mosquitoes to chikungunya virus. American Journal of Tropical Medicine and Hygiene, 70(4), 346–350.

Myles Allen, et al. (2018). Summary for Policymakers - Global warming of 1.5oC, an IPCC special report. WHO.

Naish, S., Dale, P., Mackenzie, J. S., McBride, J., Mengersen, K., & Tong, S. (2014). Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infectious Diseases, 14(1), 167.

https://doi.org/10.1186/1471-2334-14-167

Negev, M., Paz, S., Clermont, A., Pri-Or, N. G., Shalom, U., Yeger, T., & Green, M. S. (2015). Impacts of climate change on vector borne diseases in the mediterranean basin-implications for preparedness and adaptation policy. International Journal of Environmental Research and Public Health, 12(6), 6745-6770.

https://doi.org/10.3390/ijerph120606745

Regis, L., Monteiro, A. M., De Melo-Santos, M. A. V., Silveira, J. C., Furtado, A. F., Acioli, R. V., … De Souza, W. V. (2008). Developing new approaches for detecting and preventing Aedes aegypti population outbreaks: Basis for surveillance, alert and control system. Memorias Do Instituto Oswaldo Cruz, 103(1), 50–59. https://doi.org/10.1590/S0074-02762008000100008

Tang, S. C. N., Rusli, M., & Lestari, P. (2018). Climate Variability and Dengue Hemorrhagic Fever in Surabaya, East Java, Indonesia. Arlangga Unversity, (December). https://doi.org/10.20944/preprints201812.0206.v1

Tosepu, R., Tantrakarnapa, K., Nakhapakorn, K., & Worakhunpiset, S. (2018). Climate variability and dengue hemorrhagic fever in Southeast Sulawesi Province, Indonesia. Environmental Science and Pollution Research, 25(15), 14944–14952. https://doi.org/10.1007/s11356-018-1528-y

Tosepu, R., Tantrakarnapa, K., Worakhunpiset, S., & Nakhapakorn, K. (2018). Climatic factors influencing dengue hemorrhagic fever in Kolaka district, Indonesia. Environment and Natural Resources Journal, 16(2), 1–10. https://doi.org/10.14456/ennrj.2018.10

World Health Organization. (1997). Dengue Haemorrhagic Fever Diagnosis, Treatment, prevention and Control (second Edition).

World Health Organization. (2011). Comprehensive guideline for prevention and control of dengue and dengue haemorrhagic fever.

World Health Organization. (2014). World Health Statistic 2014.

Downloads

Published

24-09-2020